Unit 19 Proportions

- 1. A proportion exists when two ratios are equal.
- 2. Equal ratios are also equivalent fractions.
 - A. Look at the proportion statement 2:6 = 3:9 or $\frac{2}{6} = \frac{3}{9}$.
 - B. Reducing reveals these two ratios are equal and therefore in proportion.

$$\frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3}$$

$$\frac{3}{9} = \frac{3 \div 3}{9 \div 3} = \frac{1}{3}$$

Look at the proportion
$$\frac{2}{6} = \frac{3}{9}$$

Note: 2 is $\frac{1}{3}$ of 6 and 3 is $\frac{1}{3}$ of 9.

 When proportions are written as fractions, their cross products are equal. This cross products rule is often referred to as cross multiplication. Note: Product means the

Note: Product means the result of multiplication.

$$\frac{2}{6} = \frac{3}{9}$$

$$\frac{2}{6} \times \frac{3}{9}$$

$$2 \times 9 = 6 \times 3$$

$$18 = 18$$

A. Equality of cross products can be used to determine if ratios are equal and therefore, in proportion.

Example:

Are 3/4 and 9/12 in proportion?

$$\frac{3}{4} = \frac{9}{12}$$

3×12 <u>?</u> 4×9

Since 36 = 36 These two ratios are in proportion.

Example:

Are 2/3 and 4/5 in proportion?

$$\frac{2}{3} = \frac{4}{5}$$
$$2 \times 5 \stackrel{?}{\cdot} 3 \times 4$$

Since 10 < 12
The two ratios are not in proportion.

- B. Cross products can be used to determine the larger of two fractions.
 - 1. When cross products are not equal, product size shows fraction size.
 - a. If the first number is larger than the second number, the first fraction is larger.
 - b. If the second number is larger than the first number, the second fraction is larger.
 - 2. As indicated by the arrows below, be sure to multiply down to the right and then up to the right.
 - 3. Example:

Compare $\frac{5}{8}$ to $\frac{7}{12}$.

5×12?8×7

Since 60 > 56

5/8 is larger than 7/12